Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
نویسندگان
چکیده
Highly sensitive SERS substrates with a limit of detection in the zeptomole (for Nile blue A and oxazine 720) range were fabricated through a bottom-up strategy. Ag nanoparticles (Ag NPs) were self-assembled onto glass slides by using 3-mercaptopropyltrimethoxysilane (MPTMS) sol-gel as linker. The substrates were characterized by UV-Vis and AFM after each deposition of Ag NPs. It was found that the glass slide presented just a few Ag NPs aggregates scattered throughout the surface after just one deposition. The glass surface was gradually covered by a homogeneous distribution of Ag NPs aggregates as the deposition number increased. Surface-enhanced Raman scattering (SERS) of the substrates was examined at different numbers of Ag NPs deposition using nile blue A and oxazine 720 as probe molecules and two laser excitations (632.8 nm and 785 nm). Optimum SERS was observed after six depositions of Ag NPs. SERS mapping indicated that at lower deposition numbers (less than 3 Ag NPs depositions) the substrates presented a few SERS "hot-spots" randomly distributed at the surface. After 7 Ag NPs depositions, spatial distribution of the SERS signal followed a Gaussian statistics, with a percent relative standard deviation (RSD%) of approximately 19%. In addition, the sample-to-sample reproducibility of the SERS intensities under both laser excitations was lower than 20%. It was also found that these substrates can provide giant Raman signal enhancement. At optimum conditions and with a 632.8 nm laser, the signal from an estimated of only approximately 44 probe molecules (100x objective) can still be detected.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملSelf-assembly of various silver nanocrystals on PmPD/PAN nanofibers as a high-performance 3D SERS substrate.
We report a facile method to synthesise flexible 3D surface-enhanced Raman scattering (SERS) substrates, using poly-m-phenylenediamine/polyacrylonitrile (PmPD/PAN) nanofiber mats as templates to self-assemble citrate-stabilized Ag nanocrystals (AgNCs), such as Ag nanoparticles (AgNPs), Ag nanotriangles (AgNTs) or Ag nanodisks (AgNDs). The SERS performances of AgNC@2D and AgNC@3D substrates were...
متن کاملCoating Of Silver Nanoparticles by Sputtering Method on Glass Substrates as Surface-Enhanced Raman Spectroscopy (SERS) Biosensor for Detection of Whey Protein
This article has no abstract.
متن کاملSilver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection.
Silver nanoparticles (AgNPs) decorated filter papers combining solid-phase extraction (SPE) with surface enhanced Raman spectroscopy (SERS) achieved rapid collection of analytes and in situ detection. The AgNPs were fabricated by cellulose self-sacrificing reduction. Aqueous Ag(NH3)2OH was reduced by hydroxyl groups in cellulose under alkaline conditions. The AgNPs were highly uniform and firml...
متن کاملPhysical Chemistry Chemical Physics This paper is published as part of a PCCP Themed Issue on: New Frontiers in Surface-Enhanced Raman Scattering
Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit Meikun Fan and Alexandre G. Brolo, Phys. Chem. Chem. Phys., 2009 DOI: 10.1039/b904744a Gated electron transfer of cytochrome c6 at biomimetic interfaces: a time-resolved SERR study Anja Kranich, Hendrik Naumann, Fernando P. Molina-Heredia, H. Justin Moore, T. Randall Lee, Sophie Lecomte, Miguel A. de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 11 34 شماره
صفحات -
تاریخ انتشار 2009